https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

 

'AI > Paper Analysis' 카테고리의 다른 글

LoRA Paper  (0) 2025.04.01
LIama 2 Paper Model  (0) 2025.04.01
LIama 1 Paper  (0) 2025.04.01

https://arxiv.org/abs/2106.09685

 

LoRA: Low-Rank Adaptation of Large Language Models

An important paradigm of natural language processing consists of large-scale pre-training on general domain data and adaptation to particular tasks or domains. As we pre-train larger models, full fine-tuning, which retrains all model parameters, becomes le

arxiv.org

 

'AI > Paper Analysis' 카테고리의 다른 글

ChatGPT-1 Paper  (0) 2025.04.02
LIama 2 Paper Model  (0) 2025.04.01
LIama 1 Paper  (0) 2025.04.01

https://arxiv.org/abs/2307.09288

 

Llama 2: Open Foundation and Fine-Tuned Chat Models

In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. O

arxiv.org

 

'AI > Paper Analysis' 카테고리의 다른 글

ChatGPT-1 Paper  (0) 2025.04.02
LoRA Paper  (0) 2025.04.01
LIama 1 Paper  (0) 2025.04.01

https://arxiv.org/abs/2302.13971

 

LLaMA: Open and Efficient Foundation Language Models

We introduce LLaMA, a collection of foundation language models ranging from 7B to 65B parameters. We train our models on trillions of tokens, and show that it is possible to train state-of-the-art models using publicly available datasets exclusively, witho

arxiv.org

 

'AI > Paper Analysis' 카테고리의 다른 글

ChatGPT-1 Paper  (0) 2025.04.02
LoRA Paper  (0) 2025.04.01
LIama 2 Paper Model  (0) 2025.04.01

+ Recent posts