반응형
import numpy as np

class Perceptron(object):
def __init__(self, eta=0.01, n_iter=10):
self.eta = eta
self.n_iter = n_iter

def fit(self, X, y):
self.w_ = np.zeros(1 + X.shape[1])
#print('X.shape: ', X.shape)
#print('X.shape[1]: ', X.shape[1])
#print('self.w_ :', self.w_)
#print('zip(X, y): ', list(zip(X, y)))
self.errors_ = []
for _ in range(self.n_iter):
errors = 0
for xi, target in zip(X, y):
#print('xi :', xi)
#print('target :', target)
update = self.eta * (target - self.predict(xi))
#print('self.predict(xi) :', self.predict(xi))
#print('update :', update)
self.w_[1:] += update * xi
self.w_[0] += update
#print('self.w_[:] : ', self.w_[:])
errors += int(update != 0.0)
self.errors_.append(errors)
print('self.errors_: ', self.errors_)
return self

def net_input(self, X):
"""Calculate net input"""
#print('net_input :', X)
#print('self.w_[1:] :', self.w_[1:], 'self.w_[0] :', self.w_[0])
return np.dot(X, self.w_[1:]) + self.w_[0]

def predict(self, X):
"""Return class label after unit step"""
return np.where(self.net_input(X) >= 0.0, 1, -1)

import pandas as pd

df = pd.read_csv('https://archive.ics.uci.edu/ml/'
'machine-learning-databases/iris/iris.data', header=None)
df.tail()

####%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

# select setosa and versicolor
y = df.iloc[0:100, 4].values
#print('y :', y)
y = np.where(y == 'Iris-setosa', -1, 1)

# extract sepal length and petal length
X = df.iloc[0:100, [0, 2]].values
#print('X: ', X)
# plot data
plt.scatter(X[:50, 0], X[:50, 1],
color='red', marker='o', label='setosa')
plt.scatter(X[50:100, 0], X[50:100, 1],
color='blue', marker='x', label='versicolor')

plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upper left')

plt.tight_layout()
#plt.savefig('./images/02_06.png', dpi=300)
plt.show()



ppn = Perceptron(eta=0.1, n_iter=10)
ppn.fit(X, y)
#print('X: ', X)
#print('y: ', y)
plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Number of misclassifications')
plt.show()


from matplotlib.colors import ListedColormap

def plot_decision_regions(X, y, classifier, resolution=0.02):
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])

x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))
#print('xx1: ', xx1)
#print('xx1.ravel(): ', xx1.ravel())
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())

for idx, cl in enumerate(np.unique(y)):
#print('X[y == cl, 0]: ', X[y == cl, 0])
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx),
marker=markers[idx], label=cl)

plot_decision_regions(X, y, classifier=ppn)
plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upper left')
plt.show()


X_std = np.copy(X)
X_std[:, 0] = (X[:, 0] - X[:, 0].mean()) / X[:, 0].std()
X_std[:, 1] = (X[:, 1] - X[:, 1].mean()) / X[:, 1].std()


class AdalineGD(object):
def __init__(self, eta=0.01, n_iter=50):
self.eta = eta
self.n_iter = n_iter

def fit(self, X, y):
self.w_ = np.zeros(1 + X.shape[1])
self.cost_ = []

for i in range(self.n_iter):
output = self.net_input(X)
errors = (y - output)
# print(errors)
self.w_[1:] += self.eta * X.T.dot(errors)
self.w_[0] += self.eta * errors.sum()
cost = (errors ** 2).sum() / 2.0
self.cost_.append(cost)

return self

def net_input(self, X):
return np.dot(X, self.w_[1:]) + self.w_[0]

def activation(self, X):
return self.net_input(X)

def predict(self, X):
return np.where(self.activation(X) >= 0.0, 1, -1)


fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X, y)
ax[0].plot(range(1, len(ada1.cost_) + 1), np.log10(ada1.cost_), marker='o')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('log(Sum-squared-error)')
ax[0].set_title('Adaline - Learning rate 0.01')

ada2 = AdalineGD(n_iter=10, eta=0.0001).fit(X, y)
ax[1].plot(range(1, len(ada2.cost_) + 1), ada2.cost_, marker='o')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Sum-squared-error')
ax[1].set_title('Adaline - Learning rate 0.0001')

plt.tight_layout()
# plt.savefig('./adaline_1.png', dpi=300)
plt.show()

ada = AdalineGD(n_iter=15, eta=0.01)
ada.fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
plt.show()

plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Sum-squared-error')
plt.show()


from numpy.random import seed

class AdalineSGD(object):
def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None):
self.eta = eta
self.n_iter = n_iter
self.w_initialized = False
self.shuffle = shuffle
if random_state:
seed(random_state)

def fit(self, X, y):
self._initialize_weights(X.shape[1])
self.cost_ = []
for i in range(self.n_iter):
if self.shuffle:
X, y = self._shuffle(X, y)
cost = []
for xi, target in zip(X, y):
cost.append(self._update_weights(xi, target))
avg_cost = sum(cost)/len(y)
self.cost_.append(avg_cost)
return self

def partial_fit(self, X, y):
if not self.w_initialized:
self._initialize_weights(X.shape[1])
if y.ravel().shape[0] > 1: #ravel -> [1, 2, 3], [4, 5, 6] -> [1, 2, 3, 4, 5, 6]
for xi, target in zip(X, y):
self._update_weights(xi, target)
else:
self._update_weights(X, y)
return self

def _shuffle(self, X, y):
r = np.random.permutation(len(y)) # 순서를 임의로 바꾸거나 임의의 순열을 반환한다.
return X[r], y[r]

def _initialize_weights(self, m):
self.w_ = np.zeros(1 + m)
self.w_initialized = True

def _update_weights(self, xi, target):
output = self.net_input(xi)
error = (target - output)
self.w_[1:] += self.eta * xi.dot(error)
self.w_[0] += self.eta * error
cost = 0.5 * error ** 2
return cost

def net_input(self, X):
return np.dot(X, self.w_[1:]) + self.w_[0]

def activation(self, X):
return self.net_input(X)

def predict(self, X):
return np.where(self.activation(X) >= 0.0, 1, -1)


ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
print('X_std: ', X_std)
print('y: ', y)
ada.fit(X_std, y)
#ada.partial_fit(X_std[0, :], y[0])
plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Stochastic Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
plt.show()
plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Averages Cost')
plt.show()


반응형

+ Recent posts